References
Asmuth, J., Morson, E. M., & Rips, L. J. (2018). Children’s
understanding of the natural numbers’ structure. Cognitive
Science, 42(6), 1945–1973. https://doi.org/https://doi.org/10.1111/cogs.12615
Bakker, J. D. (2024). Applied multivariate statistics in
R. Pressbooks.
Bergstrom, C. T., & West, J. D. (2020). Calling bullshit: The
art of skepticism in a data-driven world. Random House.
Björklund, M. (2019). Be careful with your principal components.
Evolution, 73(10), 2151–2158. https://doi.org/https://doi.org/10.1111/evo.13835
Chari, L., Tara AND Pachter. (2023). The specious art of single-cell
genomics. PLOS Computational Biology, 19(8), 1–20. https://doi.org/10.1371/journal.pcbi.1011288
Healy, J., & McInnes, L. (2024). Uniform manifold approximation and
projection. Nature Reviews Methods Primers, 4(1), 82.
https://doi.org/10.1038/s43586-024-00363-x
Lever, J., Krzywinski, M., & Altman, N. (2017). Principal component
analysis. Nature Methods, 14(7), 641–642. https://doi.org/10.1038/nmeth.4346
Marx, V. (2024). Seeing data as t-SNE and UMAP do. Nature
Methods, 21(6), 930–933. https://doi.org/10.1038/s41592-024-02301-x
Novembre, J., Johnson, T., Bryc, K., Kutalik, Z., Boyko, A. R., Auton,
A., Indap, A., King, K. S., Bergmann, S., Nelson, M. R., Stephens, M.,
& Bustamante, C. D. (2008). Genes mirror geography within europe.
Nature, 456(7218), 98–101. https://doi.org/10.1038/nature07331
Novembre, J., & Stephens, M. (2008). Interpreting principal
component analyses of spatial population genetic variation. Nature
Genetics, 40(5), 646–649. https://doi.org/10.1038/ng.139
Saccenti, E. (2024). A gentle introduction to principal component
analysis using tea-pots, dinosaurs, and pizza. Teaching
Statistics, 46(1), 38–52. https://doi.org/https://doi.org/10.1111/test.12363
Suzuki, Y., Endo, M., Cañas, C., Ayora, S., Alonso, J. C., Sugiyama, H.,
& Takeyasu, K. (2014). Direct analysis of holliday junction
resolving enzyme in a DNA origami nanostructure. Nucleic Acids
Research, 42(11), 7421–7428. https://doi.org/10.1093/nar/gku320
Wattenberg, M., Viégas, F., & Johnson, I. (2016). How to use t-SNE
effectively. Distill. https://doi.org/10.23915/distill.00002
Yi, X., & Latch, E. K. (2022). Nonrandom missing data can bias
principal component analysis inference of population genetic structure.
Mol Ecol Resour, 22(2), 602–611. https://doi.org/10.1111/1755-0998.13498